

TRITERPENOID FROM THE RHIZOME OF *ALISMA PLANTAGO-AQUATICA*

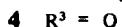
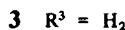
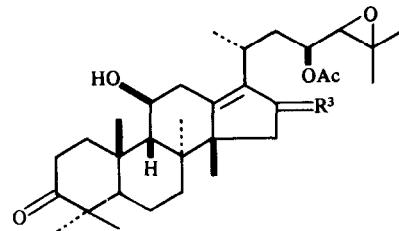
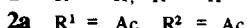
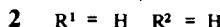
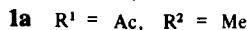
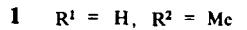
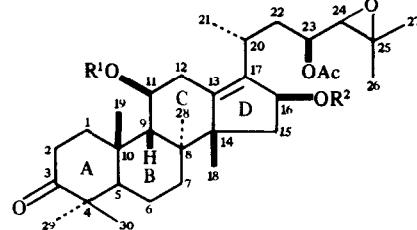
GENG PEI-WU,* YOSHIYASU FUKUYAMA,† TOSHIHIDE YAMADA, WANG REI,* BAO JINXIAN* and KAZUYUKI NAKAGAWA

Tokushima Research Institute, Otsuka Pharmaceutical Co Ltd, 463-10 Kagauno, Kawauchi-cho, Tokushima 771-01, Japan

(Received 29 June 1987)

Key Word Index—*Alisma plantago-aquatica*, Alismataceae, protostane-type triterpene; 16 β -methoxyalisol B monoacetate, 16 β -hydroxyalisol B monoacetate; alisol B monoacetate, alisol C monoacetate.

Abstract—Two new protostane-type triterpenes have been isolated from the methanol extract of the rhizome of *Alisma plantago-aquatica*. Their structures have been elucidated as 16 β -methoxyalisol B monoacetate and 16 β -hydroxyalisol B monoacetate mainly on the basis of spectroscopic data.









INTRODUCTION

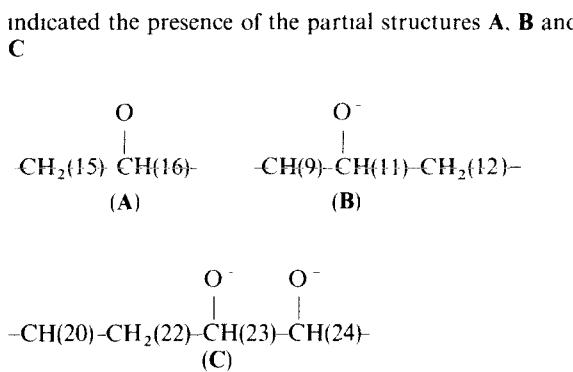
A Chinese crude drug 'Zexie', Alismatic Rhizome, is composed of the rhizome of *Alisma plantago-aquatica* L. var. *orientale* Samuelsson (Alismataceae), and it is well known as an important component in Oriental medicine. This medicinal herb has also been recognized as having diuretic action [1]. The plant contains a series of unique triterpenoids, alisol A, alisol A monoacetate, alisol B, alisol B monoacetate, alisol C and alisol C monoacetate [2-5], which show a positive hypocholesterolemic action [6]. In addition, these alisols, in particular, alisol A monoacetate and alisol B were identified as diuretic principles [7]. In the course of our continuing search for coronary vasodilating substances in this plant [8], we have isolated two new protostane-type triterpenes **1** and **2**, the structures of which are described in this paper.

RESULTS AND DISCUSSION

From a methanol extract of the rhizome of *Alisma plantago-aquatica*, a combination of column chromatography and MPLC led to the isolation of compounds **1** and **2** along with the known alisol B monoacetate (**3**) and alisol C monoacetate (**4**).

Compound **1** had the molecular formula $C_{33}H_{52}O_6$ (M^+ at m/z 544.3767) and displayed the presence of hydroxy (3500 cm^{-1}) and ester (1740 cm^{-1}) groups. The ^{13}C NMR spectrum of **1** (Table 1) was very similar to that of alisol B monoacetate (**3**) previously isolated from *A. plantago-aquatica* except for the extra signals at δ 56.09 and 86.20 assignable to a CHOMe

grouping, the ^1H NMR spectrum contained signals for seven tertiary methyls, a secondary methyl and a methoxy group. In addition, the mass spectrum of **1** fragmentation ions at m/z 150 and 122 characteristic of the A ring of alisols [5]. These spectral features disclosed that **1** would belong to a protostane-type triterpenoid [6]. Extensive selective proton decoupling experiments (Table 2)

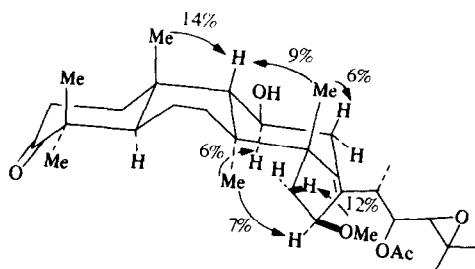

* Present address Beijing Institute of Pharmaceutical Industries, 12 Dong Da Qiao Road, Chao Yang Men Wai, Beijing, China.

† Author to whom correspondence should be addressed

Table 1 ^{13}C NMR spectral data of compounds **1**, **2**, **3** and **4**
(CDCl_3)

C	1	2	3	4
1	34.30	34.30	34.11	34.72
2	33.61	33.60	33.65	33.49
3	220.03	220.50	220.02	219.64
4	46.08	46.87	46.86	46.86
5	48.37	48.35	48.41	48.30
6	19.45	19.99	19.99	19.85
7	30.78	30.78	29.10	30.72
8	40.20	40.19	40.66	39.98
9	49.30	49.24	49.88	48.65
10	36.80	36.79	36.69	36.83
11	69.86	69.85	70.08	69.65
12	34.46	34.48	34.42	35.97
13	134.49	135.90	134.03	177.02
14	55.01	54.81	56.96	49.67
15	38.58	43.62	30.64	45.63
16	86.20	77.29	30.86	207.90
17	142.94	143.04	130.04	138.30
18	24.49	24.08	23.10	22.99
19	23.69	23.68	23.75	22.91
20	27.72	27.73	27.76	26.56
21	25.50	25.52	25.55	25.38
22	37.82	38.06	36.86	35.47
23	72.40	72.18	71.44	71.82
24	65.64	65.42	65.00	64.82
25	58.60	58.78	58.37	58.56
26	19.32 ^a	19.57 ^b	19.31 ^c	19.62 ^d
27	24.74 ^a	24.71 ^b	24.62 ^c	24.57 ^d
28	19.99	19.68	20.03	19.17
29	29.49	29.48	30.86	29.46
30	21.38	21.33	20.08	21.03
COMe	170.20	170.30	169.84	170.01
COMe	19.99	19.92	20.03	19.98
OMe	56.09			

$a = d$ Assignment may be interchangeable



Among the protons on the carbons adjacent to the oxygen function, only the H-11 in the partial structure **B** gave rise to a large downfield shift ($\delta 4.03 \rightarrow 4.87$) on acetylation of **1**. This fact suggests that a hydroxy group must be bonded to C-11 in **B** and thus the remaining oxygen functions in **A** and **C** must be substituted. On the other hand, the equatorial configuration of the C-11 hydroxyl was evident from the large *J* values (11.1 and 10.0 Hz) for H-11. From a consideration of the chemical shift values for H-23 ($\delta 5.17$) and H-24 ($\delta 2.88$) the oxygens on C-23 and C-24 in **C** should be incorporated into the acetoxy and epoxide moieties respectively, indicating that the partial structure **C** corresponds to the side chain of alisol **B** monoacetate (**3**) and C monoacetate (**4**). In fact, the ^1H NMR and ^{13}C NMR data for the partial structure (**C**) in **1** were in good accord with those for C-20 to C-27 in **3** and **4**. Hence, **1** turned out to have the same side chain as that of alisol **B** monoacetate (**3**). Long-range coupling ($J = 1.4$ Hz) observed between H-12 in **B** and H-16 in **A** was ascribed to a homoallylic coupling through both the allylic protons next to the Δ^{13-17} double bond ($\delta 134.4$ and 142.9). This means that the partial structures (**B**) and (**A**) must be involved in the C and D rings, respectively, in the alisol. It also suggested that the extra methoxy group would be linked to C-16 in **A**. The

Table 2 ^1H NMR spectral data for compounds **1**, **2** and **4** (pyridine-*d*₅,

H	1	2	4
9	1.95 (<i>d</i> , 10.0)*	1.83 (<i>d</i> , 10.4)	2.06 (<i>d</i> , 10.6)
11	4.03 (<i>dddd</i> , 11.1, 10.0, 6.5, 5.6)	4.07 (<i>dddd</i> , 10.4, 10.0, 7.0, 5.4)	4.23 (<i>dddd</i> , 10.6, 10.2, 6.5, 5.6)
12 β	2.44 (<i>dd</i> , 13.4, 11.1, 1.4)	2.55 (<i>dd</i> , 14.0, 10.0, 1.7)	3.23 (<i>dd</i> , 13.8, 10.2)
12 α	2.89 (<i>dd</i> , 13.4, 5.6)	2.96 (<i>dd</i> , 14.0, 5.4)	2.76 (<i>dd</i> , 13.8, 5.6)
15	1.29 (<i>dd</i> , 14.3, 3.7)	1.58 (<i>dd</i> , 13.8, 4.4)	1.94 (<i>d</i> , 18.0)
	2.24 (<i>dd</i> , 14.3, 7.9)	2.50 (<i>dd</i> , 13.8, 8.1)	2.59 (<i>d</i> , 18.0)
16	4.35 (<i>ddd</i> , 7.9, 3.7, 1.4)	5.17 (<i>ddd</i> , 8.1, 4.7, 4.4, 1.7)	
20	2.82 (<i>ddd</i> , 6.9, 14.8, 4.2)	3.01 (<i>ddd</i> , 6.4, 15.0, 6.0)	2.85 (<i>ddd</i> , 6.9, 13.4, 4.2)
21	1.15 (<i>d</i> , 6.9)	1.31 (<i>d</i> , 6.4)	1.31 (<i>d</i> , 6.9)
22	1.77 (<i>ddd</i> , 14.8, 10.6, 4.2)	2.44 (2H, <i>m</i>)	1.86 (<i>ddd</i> , 13.4, 11.6, 4.2)
	2.05 (<i>td</i> , 14.8, 2.3)		2.06 (<i>td</i> , 13.4, 2.3)
23	5.17 (<i>ddd</i> , 10.6, 8.3, 2.3)	5.39 (<i>ddd</i> , 11.1, 8.1, 2.7)	4.94 (<i>ddd</i> , 11.6, 8.2, 2.3)
24	2.88 (<i>d</i> , 8.3)	2.94 (<i>d</i> , 8.1)	2.92 (<i>d</i> , 8.2)
Me	1.44, 1.36, 1.36, 1.26, 1.18, 1.10,	1.54, 1.46, 1.37, 1.23, 1.18, 1.09,	1.38, 1.38, 1.36, 1.23, 1.18, 1.09
	0.99 (each s)	1.03 (each s)	0.98 (each s)
OMe	3.19 (s)		
OH	5.87 (<i>d</i> , 6.5)	5.83 (<i>d</i> , 7.0)	6.34 (<i>d</i> , 6.5)
		6.02 (<i>d</i> , 4.7)	
Ac	1.96 (s)	1.99 (s)	1.95 (s)

* Coupling constants (J in Hz) are given in parentheses.

location of the methoxy group was verified by comparison between the ^{13}C NMR data of **1** and **3**. An oxygen-bearing methine carbon signal (δ 86.20) replaced the C-16 methylene carbon (δ 30.86) seen in the spectrum of **3**. The signals for C-15 and C-17 in **1** were observed in fields lower by +8 and +12 ppm respectively, than the corresponding ones in **3**. These downfield shifts were rationalized by a β -effect from the neighbouring methoxy group [9], which therefore must be located at C-16. Thus, the structure of **1** was elucidated as alisol B 23-monoacetate bearing the methoxy substituent at C-16. Its configuration on the D ring could be clarified by the following NOE experiments. Upon selective irradiation at δ 1.18 (18-Me), and δ 1.26 (19-Me) NOEs were observed for H-9 (9%) and H-12 β (6%), and for H-9 (14%), respectively, supporting the fact that the B ring must adopt a boat conformation like all previously known protostane triterpenoids [10]. The crucial detection of NOEs (6 and 7%) for H-11 and H-16 upon irradiation at δ 0.99 (28-Me) clearly substantiated a β -configuration of the methoxy substituent at C-16. Accordingly, the structure of **1** was proposed to be 16 β -methoxyalisol B 23-monoacetate on the basis of the above mentioned spectral data and the analogy of its congeners.

Compound **2** had the molecular formula $\text{C}_{32}\text{H}_{50}\text{O}_6$ (M^+ at m/z 530.3602), and contained hydroxy (3450 cm^{-1}), ester (1740 cm^{-1}) and ketone (1695 cm^{-1}) groups. Its mass spectrum exhibited fragment peaks at m/z 150 and 122 characteristic of alisols. The ^1H NMR spectrum of **2** showed the presence of seven tertiary methyls and a secondary methyl group disclosing its protostane triterpenoid nature. Detailed selective proton decoupling experiments (Table 2) indicated the presence of the partial structures **A**, **B** and **C** found in compound **1**. However, no signal due to a methoxy group was observed and two new signals at δ 6.02 (d , J = 4.7 Hz) and 5.83 (d , J = 7.0 Hz) appeared. These signals disappeared with D_2O exchange and were assigned to hydroxyl protons, which were coupled with the multiple signals at δ 5.17 and 4.07 presumably assignable to H-16 and H-11, respectively. Acetylation of **2** gave a diacetate [δ 2.04 (6 H)] confirming the presence of the two hydroxy groups. These data implied that the structure of **2** was closely related to that of **1**, the methoxy substituent at C-16 in **1** being replaced with the hydroxy group. The ^{13}C NMR data of **2** (Table 1) corresponded well to those of **1** except for the signals for C-15, C-16 and C-17 and the loss of the methoxy signal. It could be reasonably explained by a substituent effect on methylation of the hydroxyl [9] that the C-16, C-15 and C-17 signals were found to be located at higher field by -9 ppm, and lower fields by +5 and +1 ppm, respectively, than the corresponding signals in the spectrum of compound **1**. These facts verified the hydroxy group was located at C-16. A β -configuration of

the hydroxy group could be assigned by the observations of the NOEs for H-16 (7%) and H-11 (7%) upon irradiation at δ 1.03 (28-Me). Accordingly, the structure of **2** was elucidated as 16 β -hydroxyalisol B 23-monoacetate.

From the rhizome of *Alisma plantago-aquatica* nine protostane triterpenoids, including **1** and **2**, and sesquiterpenoids [11] have so far been isolated. However, we have already shown that these compounds exhibit no coronary vasodilating activity [12] and thus the active substances of this plant have not yet been isolated.

EXPERIMENTAL

Mps uncorr, ^1H NMR (400 MHz) and ^{13}C NMR (62.9 MHz) CDCl_3 , TMS as int standard, CC silica gel (Wakogel C-300), neutral alumina (Merck), TLC precoated silica gel plates F_{254} and RP-8 plates F_{254} (Merck, 0.25 mm). Spots were visualized by UV (254 nm) and 40% $\text{CeSO}_4\text{-H}_2\text{SO}_4$.

Plant material *Alisma plantago-aquatica* was collected in China and identified by Wang Rei. A voucher specimen has been deposited at Beijing Institute of Pharmaceutical Industries.

Extraction and isolation Air-dried and powdered rhizome (5 kg) of *A. plantago-aquatica* was extracted with MeOH (30 l) at room temp for 29 days. The MeOH extract was evapd *in vacuo* to give a crude extract (400 g), 170 g of which was divided by CC on silica gel using $\text{CH}_2\text{Cl}_2\text{-MeOH}$ gradient into 11 fractions fr 1 (CH_2Cl_2), frs 2-4 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 19:1), frs 5-7 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 9:1), frs 8,9 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 4:1), fr 10 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 7:3), fr 11 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 1:1). Fr 5 (26 g) was chromatographed on Sephadex LH-20 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$, 1:1), followed by CC on silica gel ($\text{CH}_2\text{Cl}_2\text{-EtOAc}$, 10:1 → 7:3) to give 8 fractions. The fifth fraction (3.05 g) afforded alisol B monoacetate (**3**) (114 mg) and alisol C monoacetate (**4**) (38 mg). The sixth fraction (2.4 g) was further divided by MPLC [column Lichroprep RP-8, type C, solvent: $\text{MeOH-H}_2\text{O}$, 4:1] to afford **1** (16 mg) as a crystal, which was recrystallized from $\text{CH}_2\text{Cl}_2\text{-MeOH}$. On the other hand, the third fraction was purified by CC on silica gel ($\text{CHCl}_3\text{-MeOH}$, 60:1) to afford **2** (11 mg) as crystals, recrystallized from $\text{CH}_2\text{Cl}_2\text{-MeOH}$.

16 β -Methoxyalisol B monoacetate (1) Colourless prisms, mp 164-166°, $[\alpha]_{D}^{25}$ 89.4 (CHCl_3 , c 0.92); MS m/z (rel int) 544.3767 [M^+] (calc. 544.3764 for $\text{C}_{32}\text{H}_{52}\text{O}_6$, 3), 526, 484, 150 (31), 122 (21), IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} 3450 (OH), 1740 (ester), 1700 (C=O), ^1H NMR and ^{13}C NMR see Tables 1 and 2.

Acetylation of 1 The acetate of **1** (2 mg) was prepared by treatment with Ac_2O (0.1 ml) and pyridine (0.4 ml). The usual work-up yielded **1a** (2.1 mg) as an amorphous gum. MS m/z (rel int) 586 [M^+] (1), 526 (12), 466 (5), ^1H NMR δ 0.90 (3 H, s), 0.98 (3 H, s), 1.05 (3 H, s), 1.07 (3 H, s), 1.10 (3 H, d, J = 6.9 Hz, H-21), 1.24 (3 H, s), 1.28 (3 H, s), 1.32 (3 H, s), 1.68 (1 H, ddd, J = 13.9, 11.2, 5.1 Hz, H-22), 1.85 (1 H, ddd, J = 13.9, 11.2, 3.1 Hz, H-22), 1.93 (1 H, ddd, J = 13.9, 10.5, 1.7 Hz, H-12), 2.01 (6 H, s, 2 x OAc), 2.03 (1 H, d, J = 10.9 Hz, H-9), 2.11 (1 H, dd, J = 13.9, 7.1 Hz, H-15), 2.68 (1 H, d, J = 8.5 Hz, H-24), 2.70 (1 H, dd, J = 13.9, 6.1 Hz, H-12), 3.20 (3 H, s, OCH₃), 4.27 (1 H, ddd, J = 7.1, 3.4, 1.7 Hz, H-16), 4.87 (1 H, ddd, J = 10.9, 10.9, 6.1 Hz, H-11), 4.65 (1 H, ddd, J = 11.2, 8.5, 3.1 Hz, H-23).

16 β -Hydroxyalisol B monoacetate (2) Colourless needles, mp 196.5-198°, $[\alpha]_{D}^{25}$ 11.0 (CHCl_3 , c 0.32). MS m/z (rel int) 530.3602 [M^+] (calc. 530.3607 for $\text{C}_{32}\text{H}_{50}\text{O}_6$, 5), 512 (3), 494 (5), 452 [$\text{M} - 18 - 60$]⁺ (36), 434 [$\text{M} - 36 - 60$]⁺ (11), 150 (41), 122 (51), IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} 3450 (OH), 1740 (ester), 1695 (C=O), ^1H NMR and ^{13}C NMR see Tables 1 and 2.

Acetylation of 2. The acetate of **2** (4 mg) was prepared by treatment with Ac_2O (0.1 ml) and pyridine (0.4 ml). The usual work-up afforded **2a** (3.5 mg) as an amorphous material. MS

m/z (rel. int.) 614 [M]⁺ (1), 554 (4), 494 (32), 434 (33), ¹H NMR δ 0.93 (3 H, s), 0.99 (3 H, s), 1.05 (3 H, s), 1.07 (3 H, s), 1.08 (3 H, d, *J* = 7.0 Hz, H-21), 1.19 (1 H, *dd*, *J* = 14.9, 3.6 Hz, H-15), 1.26 (3 H, s), 1.30 (3 H, s), 1.37 (3 H, s), 1.71 (1 H, *td*, *J* = 9.2, 5.3 Hz, H-22), 1.99 (1 H, *ddd*, *J* = 13.8, 10.7, 1.4 Hz, H-12), 2.04 (1 H, *d*, *J* = 10.7 Hz, H-9), 2.02 (3 H, s, OAc), 2.04 (6 H, s, 2 × OAc), 2.47 (1 H, *dd*, *J* = 14.9, 8.2 Hz, H-15), 2.68 (1 H, *m*, H-20), 2.72 (1 H, *d*, *J* = 9.2 Hz, H-24), 2.75 (1 H, *dd*, *J* = 13.8, 5.7 Hz, H-12), 4.66 (1 H, *td*, *J* = 9.2, 4.3 Hz, H-23), 4.87 (1 H, *ddd*, *J* = 10.7, 10.7, 5.7 Hz, H-11), 5.65 (1 H, *ddd*, *J* = 8.2, 3.6, 1.4 Hz, H-16)

Acknowledgement - We thank Mr Y Ichikawa for the measurements of the mass spectra

REFERENCES

- 1 Deng, Z and Wand, S (1961) *Zhong Hua Yi Xue Za Zhi* **47**, 7
- 2 Murata, T, Shinohara, T, Hirata, K, Kamiya, K, Nishikawa, M and Miyamoto, M (1968) *Tetrahedron Letters* 103
- 3 Murata, T and Miyamoto, M (1970) *Chem Pharm Bull* **18**, 1354
- 4 Kamiya, K, Murata, T and Nishikawa, H (1970) *Chem Pharm Bull* **18**, 1362
- 5 Murata, T, Shinohara, M and Miyashita, M (1970) *Chem Pharm Bull* **18**, 1369
- 6 Murata, T, Imai, Y, Hirata, K and Miyashita, M (1970) *Chem Pharm Bull* **18**, 1347
- 7 Hikino, H, Iwakawa, T, Oshima, Y, Nishikawa, K and Murata, T (1982) *Shoyakugaku Zasshi* **36**, 150
- 8 Wenjuan, Q, Xue, W Junjie, Z, Fukuyama, Y and Yamada, T and Nakagawa, K (1986) *Phytochemistry* **25**, 913
- 9 Wehrli, F W and Wirthlin, T (1978) *Interpretation of Carbon-13 NMR Spectra*, p 37 Heyden London
- 10 Paolo, M (1981) *Biosynthesis of Natural Products*, p 279 John Wiley, New York
- 11 Oshima, H, Iwakawa, T and Hikino, H (1983) *Phytochemistry* **22**, 183
- 12 Hashimoto, K and Kubota, K (1973) *Nauyn-Schmiedebergs Arch Pharmacol* **278**, 135